PARALLEL PROCESSORS AND NONLINEAR STRUCTURAL DYNAMICS ALGORITHMS

AND SOFTWARE

Ve P 75

Principal Investigator: Ted Beliytschko
Final Technical Report

March 1, 1986 to October 30, 1986

Department of Civil Engineering
Northwestern University
Evanston, I1linois 60201

NASA Research Grant NAG-1-650

{NASA-CE-179889) PARALLEL PICCESSORS AND
NCNLINEAR STRUCTURAL DYNAMICS AIGORITHMS AND
SCFTWARE Final Technical kepcrt, 1 Mar., -
30 Oct. 1586 (Northwestern Univ.) 35 p

CSCL 09B G3/61

N8T7-11511

Unclas
43965

PREFACE

This research was conducted under the direction of Professor Ted
Belytschko. Participating research assistants were Noreen Gilbertsen and
Bruce Engelmann. The help of Argonne National Laboratory, particularly Dr.
James Kennedy, who provided access to several parallel computing machines is
also appreciated.

The following paper supported by NASA was accepted for publication:

P. Smolinski and T. Belytschko, "Multi-Time Step Integration Using Nodal

Partitions," accepted for publication, International Journal for Numerical
Methods in Engineering.

ABSTRACT

A nonlinear structural dynamics program with an element library that
exploits parallel processing is under development. The aim is to exploit
scheduling-allocation so that parallel processing and vectorization can
effectively be treated in a general purpose program. As a byproduct an
automatic scheme for assigning time steps was devised. A rudimentary form of
the program is complete and has been tested: it shows substantial advantage
can be taken of parallelism.

In addition, a stability proof for the subcycling algorithm has been

developed.

1. INTRODUCTION

The purpose of this project is to develop a nonlinear structural dynamics
computer program with a library of elements which can effectively exploit a
computer with concurrent processing capabilities and vectorization. The
program will be developed in a form that is readily adaptable to the NICE test
bed of NASA Langley.

While substantial study has already been devoted to the treatment of
large systems of partial differential equations (PDE) on MIMD (Multiple
Instruction - Multiple Data Stream Processors), see Ref. [1] the problems
posed in the parallelization of general purpose of finite element computer
programs are substantially different. In large PDE systems, the computations
associated with each node of a mesh are usually in essense quite similar and
most of the concern lies with the spatial partitioning of the mesh éo that
optimum utilization of the parallel character of the computer is achieved.

On the other hand, in a general purpose finite element program, a major
difficulty in parallelization is associated with the large variety of elements
and constitutive models which are used in a computation. Thus, the most
'effecfive utilization of concurrent processing will usually not be that based
on a simple subdivision of the spatial domain, since vectorization of a stream
of dissimilar elements is almost impossible. The problem is further
compounded by the practical necessity of post-processing the solution for
graphic- display purposes in parallel with the computation. The practice of
simply dumping all historical variables such as displacements, strains and
stresses at all points into a storage device and then processing it subsequent
to the calculation is usually unbelievably wasteful in a nonlinear structural
dynamics computation because of the large amounts of time required for the

communication and the large amounts of storage required.

Thus it can be seen that in a general purpose programs for nonlinear
structural dynamics, the assignment - scheduling problem is quite crucial.
Obviously, if one processor tends to lag behind the others, the benefits of a
paraliel architecture are quickly dissipated. As an example of the type of
scheduling problem that arises in a typical nonlinear structural dynamics
calculation, consider the nonlinear response of an elastic-plastic structure
to an impulsive l1oad. Initially the behavior of most of the structure will be
elastic. However, as the deformation progresses, plastic response develops in
some elements which will slow down the processing substantially. An efficient
algorithm should be able to handle these changes in an effective manner
without degrading performance.

In this work, an explicit method has been chosen for the time
integration. The architecture of an explicit time integration program is such
that it can readily be expanded to an implicit time integration program based
on an iterative solver such as the conjugate gradient method. This class of
algorithms is most readily adapted to concurrent processing machines because
the bulk of the computation time is devoted to element level operations,
namely, obtaining element nodal forces from element nodal displacements via
the strain-displacement equations, the constitutive law, and the volume
integration of the semi-discrete divergence of the stress tensor, that is, the
computation of the internal nodal forces.

An effective implementation of an explicit time integration scheme in
nonlinear structural dynamics requires that different time steps be used on
different parts of the mesh. Otherwise, the presence of a few stiff elements
in the model will entail the use of a small time step for the entire mesh.
Therefore, the explicit time integration procedure in this project was

designed so that different time steps could be used on different parts of the

mesh. Furthermore, in conjunction with the vectorization and parallelli-

zation, the program is being designed to automatically assign time steps to

different parts of the mesh. Previous versions of time step partitions always
required the user to select the domains which would use different time steps
and for the partition to remain fixed throughout the computation.

Although we had originally planned to implement our algorithms on a
partitioned memory machine, initial planning indicated it would be better to
take one step at a time and implement the algorithm in a shared memory
machine. For this purpose, two computers which are available at Argonne
National Laboratory were chosen: the Sequent Balance 8000/21000 and the
Alliant. The implementation of parallel processing in these machines at the
Argonne center was facilitated substantially by the availability of a macro
library of monitors which enables programmers to write portable FORTRAN Code
for multi-processors [2]. These monitors are very similar in content to the
FORCE monitors developed by Jordan [3], so eventual translation of this
program to the NICE test bed of NASA Langley should be readily accomplished.

As a framework of the initial studies, the program WHAMS, which is
partially described in Ref. [4] and [5] was chosen. This program contains a
4-node quadrilateral shell element, a beam element, and a spring element so
that the allocation problem among different elements could effectively be
studied. It is a three dimensional program which treats both geometric and
material nonlinearities.

An outline of the report is as follows. Section 2 describes the time
integration algorithm., Section 3 gives some sample numerical results,
followed by some conclusions. A stability proof for a model problem relevant

to the subcycling procedure is given in the Appendix.

2. ALGORITHM DESCRIPTION

Central Difference Method

A finite element model of a nonlinear structure is governed by the

following equations:

strain-displacement equations (in rate-form)

(1)
D=8

&C .

constitutive equations (in rate-form)
. (2)
1=, D)

momentum equations

e _ -1
y=N (zext - iint)
f [BT T (4)
~jint,e a ~
e

In the above the following nomenclature has been used.

B ... strain-rate-velocity matrix
D ... velocity strains (strain rates)
Lint ++* internal nodal forces
cos external nodal forces
~ext
M. mass matrix (assumed diagonal and lumped)
T, I cee Cauchy stress matrix and its frame invariant rate
u, Q,,g e nodal displacements, velocities and accelerations,

respectively

R eee the domain of element e
... the constitutive equation (or algorithm)
The subscript e will always indicate element-related variables.
The central difference method uses the following equations to update the

nodal variables
. 1 . _]_ .
En+ 1o . L"n 2 . At En (5)

on+ 1
un+1 = g" +at ™ 72 (6)

~ ~

In the above, superscripts designate time steps.

An outline of the algorithm for explicit time integration is given in
Table 1. As can be seen from the flow chart, the major opportunity~for paral-
lelization appears in the loop over the elements. The number of muitipli-
cations per element can vary from 50 to the order of 103. Here we have a
coarse-grained parallelism which is ideal for concurrent processors. However,
if the parallelism is exploited on an element level, then the opportunities
for any signifi;ant vectorization are lost. To exploit vectorization in
conjunction with parallelism, it is necessary to arrange the elements in
groups. The number of groups should be greater than the number of processors,
but the size of each group is limited also by the auxiliary arrays which are
needed for vectorization. Furthermore, for an efficient implementation of

vectorization, only one type of element can occur in a group.

Table 1

Outline of Explicit Algorithms

-1
1. Initial conditions: u /2, go

2. Update nodal velocities and displacements by Eqs. (5) and (6)
3. Loop over all NE elements

Loop over all NG quadrature points in element

Compute velocity strains by Eq. (1)

Evaluate constitutive law, Eq. (2)

Evaluate QT T and add to integrand of Eq. (4)

end of Toop over quadrature points

add f. to total zin

~int,e array

t
end of loop over elements

4, Compute accelerations by Eq. (3); go to 2

Explicit-Explicit Partition

The concurrent procedure descrubed here is based on an explicit-explicit
partitioning procedure, or subcycling procedure, first presented in [9,10].
In this method, the elements are separated into element groups, each of which
can be integrated with a different time step subject to the following
restrictions:

1. The largest step must be an integer multiple of all time steps.

2. If any node is shared by elements in two different integration
groups, the time steps in these groups must be integer multiples of
each other,

In adapting this method to a parallel-vector code, it was decided to make

the alignment between the element groupings for vectorization and the time

steps partitioning coincident. Thus any element group is automatically
integrated by the same time step. The element grouping is performed by a
preprocessor.

For the purpose of defining how the explicit-explicit partitioning

procedure works, we will define the following variables.

NTGRP: number of groups into which the finite element mesh is
subdivided

Ate: the time increment for element group G

tMast the master time

AtMast: the master time increment, which corresponds to the
minimum AtG among all element groups G
AtG: the time increment for element group G.
As stated previously, all element time step increments AtG must be
The maximum At

integer divisors of At a is called At _ .
ma

Mast® X

The program is designed so that it automatically decides the appropriate
nodal time step. This is accomplished by using the largest time increment for
any element group connected to the node to update the node. In order to
program this algorithm, each node therefore requires two additional words of
storage: the nodal time tN and the time increment used for tHat node, AtN.
The essence of the procedure is as follows. We call the time steps

necessary to advance the master clock by Atma a cycle. Within a cycle,

X
whenever the master clock tMast is incremented by AtMast’ all element groups

are first checked. If any element group is not ahead of the master time, i.e.

if for group G

<t

G Mast

that element group is updated. This updating involves the calculation of new
velocity strains, stresses and internal forces. The element internal forces
are then added into the global internal force matrix.
After all element groups have been updated to time tMast’ the nodal loop
for updating velocities and displacements is executed. In this loop, prior to

updating the velocities and displacements, the nodal clock tN is checked. If

ty <t

N Mast

the nodal clock is behind the master clock, so the node is updated. In
addition, the nodal clock is updated using the time increment for that node.

The algorithm assumes that a velocity strain formulation is used for all
element calculations. When an element needs to be updated, the latest
available velocity is used to compute the velocity strain. This means if an
element is connected to a node with a larger time step, it uses the same nodal
velocity for all intermediate time steps. This corresponds to a constant
velocity interpolation or a linear displacement interpolation, which has been
shown to be stable. If displacements are needed by an element at an inter-
mediate time step, linear interpolation based on the last cycle displacement
with the current velocity as a slope is used.

A flow chart for the procedure is shown in Table 2.

Table 2
Flowchart of Partitioned Explicit Algorithm

Set initial condition
) _L@ .
u =u(0), u =40), n=0, n2=0

initial accelerations are assumed to vanish go = 0.

Initialize clocks and cycie counters

tMast =0 master time
tG =0 for all element groups G
tN =0 for all nodes N

If n =0 set, nodal time (t = 0) increments AtN, subcycle counter n2 = 0

Update nodes with clocks behind the master clock, i.e. tN < tMast

a. DO N=1 to NNODE

b. if ty > tmast > skip node N

_lf

c. compute accelerations gﬂ =M f
N+ 1/2 - dn_
N ~N

~

d. update nodal velocities: u =

1/2 - "n
- u + AtN iﬂ
e. update nodal displacements: gﬂ+1 = EE + Aty QQ+ /2

f. update nodal clock: tN < tN + AtN

Compute internal forces j?:%

a. zero f,
~int

b if t. >

G tMast’ loop over element G

10

_ g oen+lp
=B E‘N

~

1
compute velocity strains: QR+ 12

1 en+ 1
compute velocity strains: g’rr 2 - B g'a'* 2

1~
update stress: IE+1 = Iﬂ *atg Iﬁ+ 2
compute element internal forces: f?;% N T i ET TR+1 av
’ v
if n2 = 1, compute stable time increment for\element

n+l : n+l
assemble Eint, y into £ o

Update element group clocks tG and n2

Compute f

ext

max

If n2 = n2 , set new element group time increment AtG

"

3. NUMERICAL RESULTS

At the present time, a version of WHAMS has been developed which includes
beam and plate elements and a rudimentary form of parallelization. However,
the conversion of the subroutines to take full advantage of vectorization has
not been completed nor has the programming of the subcycling been completed.

We will report results for 2 problems which have been solved. The first
is a spherical cap problem; the problem description and mesh are shown in
Table 3 and Fig. 1, respectively. A total of 91 nodes and 75 elements were
used for the one-quarter model. A uniform step load was applied over the
cap. The response compouted here is shown in Fig. 2 where it is compared to
results given in Ref. [6].

The computer times for various computer and various degrees of
concurrency are reported in Table 4. In addition to the concurrency which is
incorporated in the program, solution times for concurrency as developed by
the compiler are given.

The second problem which has been solved is shown in Fig. 3. In this
case, one and two processors were used for the solution. The speedup is going
from 1 to 2 processors in this case is 1.63, which is 80% of the theoretical

speedup.

Table 3.

Material Properties and Parameters for Spherical Cap Problem

Radius r = 22.27 in
Thickness t = 0.41 in
Angle a = 26,67°
Density o = 2.45 x 104 1b-sec?/in®
Young's modulus E = 1.05 x 107 psi
Poisson's ratio v = 0.3
Yield stress gy = 2.4 x 104 psi
Plastic modulus E, = 2.1x 10° psi
Pressure load P = 600 psi
Table 4

Solution times for spherical cap problem 1000 time steps

ALLIANT (1 processor) 310.9 sec
ALLIANT (compiler assigned concurrency on 8 processors) 116.5 sec
ALLIANT (8 processors; programmer designed concurrency) 65 sec
VAX 11/780 ' 901.8 sec

IBM 3033 75 sec

13

*USOW Juswa[3y pue deg [edtdayds padweiy | a4nbry4

14

plate element —

Bathe et al. —-=

-0.06

—0.04 -

—0.02 -

0.02 -
0.04 -

‘“ juaweop|dsip

0.06

Q.10

time, msec

Center Displacement of Spherical Cap for Elastic and

Elastic-Plastic Materials.

Figure 2.

7 x /9 < node plale elements

7C beam elemen’s (sh ﬂeﬂne/y

260 dejree.r- o)ﬂ_ ?c'eea’om

(1000 Trme Steps

Figure 3. Stiffened Shell Problem.

15

16

CONCLUSIONS

A simple algorithm has been developed which permits a partition of time
steps, so that different processors can run different groups of elements with
different time steps. In addition, the method has been devised so that it can
take advantage of vectorization and is quite automatic. A rudimentary form of
the program has been completed and tested. It does not yet include vector-
jzation and the complete subcycling algorithm. Several examples run on the
Alliant computer show that the resulting algorithm can take relatively good
advantage of concurrent processing.

In addition, the stability of these numerical procedures has been
studied. A proof of stability has been developed for linear first-order

systems when nodal partitions are used.

17

REFERENCES

U. Schendel, "Introduction to Numerical Methods for Parallel Computers,"
E11is - Horwood, 1984,

E.L. Lusk and R.A. Overbeek, "Use of Monitors in FORTRAN: A Tutorial on
the Barrier, Self-scheduling Do-Loop and Ask for Monitors," Report ANL-
84-51, Rev. 1, Argonne Natinal Laboratory, Argonne, IL.

H.F. Jordan, "Structuring Parallel Algorithms in a MIMD Shared Memory
Environment," Parallel Computing, 3(2), 93-110, May 1986. '

T. Belytschko, L. Schwer and M. Klein, "Large Displacement, Transient
Analysis of Space Frames," International Journal for Numerical Methods in

Engineering 11, 65-84, 1977.
T. Belytschko, J.I. Lin and C.S. Tsay, “Explicit Aigorithms for the

Nonlinear Dynamics of Shell," Computer Methods in Applied Mechanics and
Engineering, 42, 225-251, 1984,

K.J. Bathe, E. Ramm and E.L. Wilson, "Finite Element Formulations for
Large Deformation Dynamic Analysis," International Journal for Numerical
Methods in Engineering, 9, 353-386, 1975.

APPENDIX

MULTI-TIME STEP INTEGRATION USING NODAL PARTITIONING

18

19

1. INTRODUCTION

In many engineering models that are composed of non-uniform
meshes oftentimes a group of small or stiff elements forces the
integration of the remainder of the mesh with a time step much
smaller that its stable time step. To alleviate this difficulty
subcycling, which uses different time steps in different portions
of the mesh, has been developed. This eliminates the need to
update the entire mesh with the stable time step of the smallest
element, and requires much less additional programming in
comparison to implicit-explicit time integration [1-3]j.

In contrast to implicit-explicit integration, which has been
analyzed by a variety of methods [3-5], there has been little
done in the stability analysis of subcycling. One reason is that
the multiple time steps introduce special difficulties not found
in implicit-explicit integration with its single time step. Early
stability analyses have employed simplifying assumptions (6] or
failed to show that a complete set of real eigenvalues existed
[(7]. The first rigorous proof of stability is given for a
subcycling algorithm which uses the same integratlon rule in the
different partitions [8). This scheme is modified (9] to use
different values of a in the a-algorithm along with different
time steps in the different subdomains. The integration schemes
in [8-10] are based on an element partition while the algorithm
in [7] is based on a nodal partition. One major difference
between these two types of partitions is that the nodal partition
results in unsymmetric amplification matrices which complicate

the analysis.

In this paper a stability analysis of a subcycling method
which uses different values of a and a nodal partition is
presented. Two Eeatufes of this method are that no unsymmetric
systems need be solved and that a simple procedure is used to
establish sufficient conditions for stability. The element
eigenvalue inequality theorem is used to bound the critical time

step in terms of element eigenvalues.

2. MIXED TIME INTEGRATION PROCEDURE
The matrix equation governing linear diffusion processes is

Mu + Ku = s (2.1)

- ~ -~

where using the nomenclature of heat -conduction M is the
capacitance matrix, and K is the conductance matrix. The vectors
u and s represent the nodal values of the dependent variables and
source, respectively. A superposed dot denotes a time derivative.
The matrix M is assumed to be diagonal or lumped and is positive
definite, and the matrix K is symmetric and positive semidefinite.
The problem consists of finding a function u = u(t) which
satisfies governing equation (2.1) and the initial condition

u(t = 0) = u° (2.2)

for all time t, where u© is a given vector.
To develop the integration algorithm the linear one step

integrator is used, which is given by

un+1 = u" 4+ (1 - a)At u

n n+l

+ aldt u (2.3)

where ul = y(nAt) and At is the time step. If the parameter a is

equal to zero, the integration is called explicit because gn+l

20

21

can be computed from historical data. Explicit integration is
only conditionally stable, thus restricting the time step. For «a

> 0, the integration is called implicit with no restriction on At
1
2.

For the purpose of introducing the mixed time integration

if a >

procedure, the vector u is partitioned as

le NA rovws

u = : (2.4)

BB NB rOWS

where the nodal groups A and B are integrated with time steps mAt
and At, respectively, and where m is an integer such that m > 1.
Since with this method m + 1 updates are needed to advance the
solution one cycle from t to t + mAt, a counter k, which is set
to zero &t the start of each integration cycle and increased by
one after every update, is used to keep track of the updates.

The integration cycle is developed by writing Eq. (2.3) as
k+1 k k -k k ﬁk+l

S (2.5)
where
0 0 0 0
k ~ = k _ - -
Yl = W2 = for k#fm (2.6)
0 (1 = ag)I 0 ap!l
e oof o [mer 0
wl = wz = for k=m (2.7)

1O
1O
[=]
Q

Here I is the unit matrix, and the W matrices are partitioned
similar to u.

To begin the integration cycle, equation (2.6) is used in
conjunction with Eg. (2.5) to subcycle the solution m times in
partition B with a time step At. To finish the cycle, nodal
partition A is updated with the large time step mAt using Egs.
(2.5) and (2.7). After this process is complete, the solution
has been advanced by mAt in both partitions. The parameters ap
and ap determine the integration algorithm for eacq partition.

Considering the homogeneous case (s = 0), since this is
sufficient to examine stability, equation (2.1) is solved for é

and substituted into Egqg. (2.5) to yield after some manipulation

M+ AtwFR)ukt = (m - AtwiK)uk (2.8)
or

k k+1 _ .k k

Aju " = Aju (2.9)
where

A% = M+ atwkk (2.10a)

Ay = M WK

A§ =M - AtwéK (2.10b)

Using the definitions of W and the above equations, we find that

for k =0 tom - 1:

12
1o

_ (2.1la)

AtagKpa Mg + AtogK

Ly
N s

BB

22

1O

A] = (2.11b)

-At (1l - - At(l -

ag)kpa -] ag)Kpg

and similarly for k = m if it can be shown that

My + mAtaKap mita,Kyp
A; = (2.12a)
0)
@A - mAt(l - aA)IfAA -mAt(l - aA)gAB
A§ = (2.12b)
0 e~

Note that even though the matrices 55 are not symmetric, no
unsymmetric systems need be solved since thg partition containing
only the capacitance matrix is evaluated prior to solving for the
remaining nodal partition. For more details about the

implementation of this method see [7] in which a similar method

is presented.

3. STABILITY ANALYSIS
To investigate the stability characteristics of the evolution
equation (2.9) it is necessary to examine the associated

generalized eigenvalue problem, which can be written as

k - k
ALx T x (3-1)

23

Considering first the subcycle update, equation (2.11) is

substituted into the above equation and with some rearrangement

gives
0 0 Ma 0
- (L =)
X = Bt(L - a, + Btay) X (3.2)
K K B B 0 M
-BA -BB - -B
By defining
(I - A)
u = - (3.3)
At (1l ag + AtaB)
and partitioning x as
Y
X = . (3.4)
z
it follows that
\ N\
g 0 y A 0 y
ﬁ Y= <) (3.4)
XBa KeB z 0 g 2
\ p, \ /

where the dimension of the problem is N. Writing out the above

equations gives

0 =uMy (3.5a)
Kpa ¥ + Kgg 2 = u My 2 (3.5b)

Due to the positive definiteness of Mp, the first equation implies

either uw = 0 or y = 0. Assume that for i = 1 to Ng, y = 0, while

for i = Ng + 1 to N, uj 0. We now consider

CASE 1I y =0 i

-~

l to Ng
The second of the above equations gives

z; = u; My oz B

Kap i=1¢toN | (3.6)

Here Ng is the dimension of this reduced problem, obtained by

deleting rows and columns from the standard matrices. Note that
Kpg and Mp are symmetric, so that zj may be orthogonalized with
respect to Kgg and Mg. Also, since Kgp is a constrained version
of K, Kpg is not singular and 551 exists. Thus xj spans RNB and

B
is given by

¢ \
Yi 0
X; = 4 = e i=1¢toNg (3.7)
2 -1
\ /
CASE II uj = 0 i=Ng + 1, N
Then the second equation gives
Kpa ¥i * ¥gp 23 = 0 i =Nz + 1, N (3.8)
or
-1 o
2; = Xpp Kpa ¥ i=Ng+1, N (3.9)

A set of vectors, yj(i Ng + 1, N), can be choosen which span
RVA and the corresponding zj is given by Eq. (3.9). So the

eigenvectors can be written as

25

]
-

2.
~1

[]

1 = NB
Kea Yi

Since N = Nj + Ng the set of vectors given by Egs.

and (3.10) span RN,

eigenvalues are given by

(
0
Xi = 9 '
2
L_-l
4
Y
U
l ~Kpp Kpa ¥;

where the bar designates the eigenvectors corresponding to u

The vectors xj are orthogonal to each other and to xi with

to K.

Kan KaB
{OT, z?}
- %3

Kpa KeB

since zj is orthogonal with respect to Kppg.

is shown by considering

1o

N

| aabd
i

l to Ng

+ 1 to N

To show the first fact, 5?351 is written as

T

2K 2 1l to N
Zj<BBZi

e e
oW
L}

ij "i

+ 1 to N

26

(3.10)

(3.7)

Thus, two possible sets of eigenvectors and

(3.11a)

(3.11b)

0.

respect

(3.12a)

(3.12b)

The second condition

K K Y.
T - r o | BB ~J i=1tonyg
xinj = {o0", Z; (3.13a)
~t-- - - -1 j = Ng+1 to N
KBa KB Kee®BaYj B
- T _ T -1
= 2; Xpa ¥5 ~ %; ¥Bp Xae Kpa Y5 (3.13b)
=0 (3.13c)
Recalling that from Eq. (3.3)
(1 - Ai)
U, = === - S S i =1 toN
i At{l - ap + Ajag)
or
1 + At ui(aB - 1)
A, = i=1t¢toN (3.13)

i (1 + AtaBui)

For the time being, we will assume that stability will be defined

as]ki] < 1 or from the above equation

-1 1+ 5t &

Ia

BHi

for all i = 1 to N. However, if uj > 0 then Eq. (3.14) reduces

to

2

At < < (3.15)
w, (1 2ap)
Note that if uj; = 0, Eq. (3.13) implies
A =1 (3.16)

The analysis of the large time step update (k = m) proceeds

by substituting Eq. (2.12) into Eq. (3.1) and rearranging to give

27

X () 28

Kan ¥aB y Ma 0 y
= u” ﬁ ‘ (3.17)

0 0 z 0 - L z

s
where
P (1 - A‘)
u - - rd (3-18)
mAt (1l ap + x,aA)

and where the prime designates quantities associated with this

update. By arguments similar to those used in the previous update

analysis, two possible sets of eigenvectors, which span RN, and
their corresponding eigenvalues can be shown to be
¥i Yi
4 = = . " i = N .
x7 $ ’ Wi # 0 i 1l to A (3.19a)
z: 0
~i -
J
4‘ -l »
Y3 KaaKap?i
x; = = t =0 = N,+1 N 3.19b
X & Y i = Ny+l to (3.19b)
z3 z7
-lJ ~1

where gi(i = Np + 1 to N) are choosen to span RNB and

ui(i = 1 to Nj) is calculated from

Kan ¥i = Wi Ma Y3 (3.20)

Also, the set of vectors g{ can be shown to be orthogonal to each

other and x{ with respect to K.

From Eq. (3.18) we have that

1 + mAt pi(a, - 1)
\? = LA i
i (1 + mAtaAui)

1l to N (3.21)

iIA

Using the stability criterion Ik{| 1 and assuming that u{ > 0,

Eq. (3.21) gives

2

~ . i=1toN (3.22)
m(l ZaA)ui

At <

and Eq. (3.21) states that Xi = 1 for u{ = 0.

To analyze the updating procedure, the solution at any

arbitrary time is expanded in terms of the eigenvectors as
k

a" = B;x; + ngj sum on i, j (3.23)

/'y

Note that the above expan%éon is valid for either update, however,

the range of i and j and the actual vectors will vary depending.

on whether the subcycle or large time step update are considered.
Substituting the above expression into Eqg. (2.9) and taking

into account Eq. (3.1), the updated solution can be written as

k+1 _ - . ‘
d = Bixifi + ijj sum of i, j (3.24)

-

since Ay = 1 for x4j. Defining the norm
E = dTkd (3.25)
and using the fact that vectors xj are orthogonal to each other

and to xj with respect to K, substituting Eq. (3.23) gives

k T =T . — . .
ET = B.B, x, Kx, + v.v. x. Kx sum on i, 3, &, m
178 J1 LR J'm L) -.m (3.26a)

+ Y.Y —T; Kx

- Bialui‘sij j mfj ~~m

_ a2 -T -
B = Byug Y3 ¥m% 5 KXm (3.26b)

Similarly, substituting Eq. (3.24) gives

k+l _ 2
E = B;

2 =T _— .
Xiui + Yij fj §§m sum on 1, j, m (3.27)

If stability is defined as lkil < 1, as was previously assumed,
then it is apparent from the above two equations that EK*l < Ek,
Moreover, since this norm decreases or remains constant for each

update, it and thus 4, remain bounded for all time.

— o 3 I . -2

— 3 — [. | - P - P JrPoy oy PRSP Iy
1 uerteliirtnlng vne .L1llllal LiHle DdDLED Ll clicidgcliil cligyoluvalue

[]

theorem will be used which states that

e
Mpax S MAX uo o for all e (3.28)

where ugpax i1s the eigenvalue of an assemblage of elements subject

to arbitrary constraints and ugax is the maximum unconstrained
eigenvalue for any of the elements [8, 11, 12]. For the subcycle
to satisfy the stability condition, the time step must be choosen
according to Eq. (3.15) where uj is given by Eq. (3.6). Equation
(3.6) represents a constrained version of the eigenvalue problem
obtained by assembling all the elements which contain a node of
partition B so that

e
Mnax < MAX u for all e ¢ SB (3.29)

where Sg is comprised of elements which have a node in partition

B. Using the above inequality Eg. (3.15) is satisfied if

2
e
(1 zaB)umax

At < for all e ¢ SB {3.30)

30

L VI I T

Similar arguments can be used for the large time step update to
bound u{ from Eq. (3.20) as

The < MAX ue

max < max for all e e S, (3.31)

The above inequality can be used in Eq. (3.22) to provide a bound

for the critical time step in the form

At < 2 for all e € S (3.32)
- m(l - 2a)ue A
A’ "max

Equations (3.30) and (3.32) give a convenient and- easily calculated

Comsimne Emee o a
LOrfm £OC TASOSAng the

subcycling algorithm.

31

|

e s

iaintiin

(1)

(2)

(3)

(4)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

REFERENCES

T. Belytschko, H.J. Yen and R. Mullen, "Mixed Methods for
Time Integration," Comp. Meth. Appl. Mech. Engrg., 17/18,
259-275 (1979).

T.J.R. Hughes and W.K. Liu, "Implicit-Explicit Finite
Elements in Transient Analysis: Implementation and
Numerical Examples," J. Appl. Mech., 45, 375-378 (1978).

T. Belytschko and T.J.R. Hughes, Eds. Computational Methods
for Transient Analysis, North-Holland, Amsterdam, 1983.

K.C. Park, "Partitioned Transient Analysis Procedure for
Coupled-Field Problems: Stability Analysis," J. Appl.
Mech., 47, 370-376 (1980).

T. Belytschko and R. Mullen, "Stability of Explicit-Implicit
Mesh Partitions in Time Integration," Int. J. Numer.
Methods Engrg., 12, 1575-1586 (1978).

W.K. Liu and J. Lin, "Stability of Mixed Time Integration
Schemes for Transient Thermal Analysis," Numerical Heat
Transfer, 5, 211-222 (1982).

T. Belytschko, W.K. Liu and P. Smolinski, "Computational
Methods for Analysis of Transient Response,” A.S.C.E.
Engineering Mechanics Speciality Conf., Purdue University,
West Lafayette, Indiana, 23-25, May, 1983.

T. Belytschko, P. Smolinski and W.K. Liu, "Multi-Stepping
Implicit-Explicit Procedures in Transient Analysis" in:
Innovative Methods for Nonlinear Problems, W.K. Liu, T.
Belytschko and K.C. Park, Eds. (Pineridge Press, Swansea,
U.K.) 135-153 (1984).

s
P. Smolinski, T. Belyschko and W.K. Liu, "Stability of
Multi-Time Step Partitioned Transient Analysis for First
Order Systems of Equations,"” submitted for publication.

T. Belytschko, P. Smolinski and W.K. Liu, "Stability of
Multi-Time Step Partitioned Integrators for First Order
Finite Element Systems," Comp. Meth. Appl. Mech. Eng.,
49(3), 281-297 (1985).

B.M. Irons, "Application of a Theorem on Eigenvalues to
Finite Element Problems," (CR/132/70) University of Wales,
Dept. of Civil Engineering, Swansea, 1970.

D.P. Flanagan and T. Belytschko, "Simultaneous Relaxation
in Structural Dynamics," Journal of Engineering Mechanics
Division, ASCE, 1039-1055 (1981).

32

ARSTRAET

@ N A nonlinear structural dynamics program with an element library that
exploits parallel processing is under development. The aim is to exploit
scheduling-allocation so that parallel processing and vectorization can
effectively be treated in a general purpose program. As a byproduct an
automatic scheme for assigning time steps was devised. A rudimentary form of
the program is complete and has been tested: it shows substantial advantage
can be takgz_gf_ggzillsliiﬂlth

<ffg’gadition, a stability proof for the subcycling algorithm has been

developed.

